Name: _				Block:	Date:	
		Calculating	Wave Speed,	Frequency, and	Wavelength	
		Formulas:	$v = \lambda * f$	$f = \frac{\mathbf{v}}{\lambda}$	$\lambda = \frac{\mathrm{v}}{\mathrm{f}}$	
Where v stands for				and the units	are meters per secon	nd (m/s).
λ stands for				and the units	s are meters (m).	
f stands for				and the unit	s are Hertz (Hz).	
1. \	What is th	e speed (v) of a wa	ave that has a wa	velength (λ) of 2 m and	d a frequency of 6 Hz?)
		Solving for		Equation		
		Substitute		Answer w/ units		
	Calculate † m.	the speed of a way	ve with a frequenc	 cy of 2 Hz (2/s), amplit	ude of 3m, and a wave	elength of 10
		Solving for		Equation		
		Substitute		Answer w/ units		
	f two way s the way		ven point each se	cond, and the distance	 e between wave crests	s is 3 m, what
		Solving for		Equation		
		Substitute		Answer w/ units		
		•	_	hear has a frequency of its its wavelength?	of 20 Hz. If sound wit	h this
		Solving for		Equation		
		Substitute		Answer w/ units		
		 ose dolphin can he oproximately 1,50		 equencies up to 150,00 wavelength?	 00 Hz. If the speed of	sound in sea
		Solving for		Equation		
		Substitute		Answer w/ units		
6. \	Waves in t	the ocean are 6 m	apart and pass a	surfer every 2 s. What	t is the wave speed.	
		Solving for		Equation		
		Substitute		Answer w/ units		

7. A buoy on a lake bobs up and down. The waves that cross the buoy have a wavelength of 3 m and a frequency of 3 Hz. What is the speed of the waves?

Solving for	Equation
Substitute	Answer w/ units

8. A ship anchored at sea rocked by waves whose crests are 14 m apart. The waves travel at 7 m/s. How often do the wave crests reach the ship?

Solving for	Equation
Substitute	Answer w/ units

- 9. Why should a wave, such as a light wave, bend when it passes from air into water?
 - a. The wave does not actually bend, but only appears to bend.
 - b. The light wave interferes with other energy waves in the water.
 - c. Waves are usually reflected by water
 - d. The speed of light is slower in water.
- 10. Which of the following is an example of a mechanical wave?
 - a. A water wave

- c. A light wave
- b. A gravitational wave
- d. An electromagnetic wave.

Examine the following waves to answer questions 11-13.

- 11. Which wave has the highest energy? Why?
- 12. Which wave as the lowest energy? Why?
- 13. Calculate the frequencies of each wave given that each wave segment passed a given point in 2 seconds.